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Brief introduction to a few of YCB’s
many fundamental contributions to both the
mathematical and the physical understanding of
Einstein's theory of gravitation

3+1 decomposition;

Solving the constraints of the Cauchy problem;

« Stability of flat space »;

Positivity of mass in a neighborhood of Minkowski space;

New formulations of Einstein's equations which were important

ingredients for being able to numerically simulate the motion and
gravitational radiation of coalescing binary black holes.



A few words on YCB’s early career

A «failed » physicist who constantly aimed at understanding the real
universe through its theoretical physics description, by using, and
perfecting, mathematical tools.

Father: Georges Bruhat, a physicist famous for his contributions to optics and for
the many high-level physics text books he wrote

« In a sense my father had a significant influence on me, though it must be said that he

had more interest in my brother [the mathematician Fran¢ois Bruhat]. He did not think

I could become a renowned scientist. He thought I would become a good mother, and

a gymnasium teacher. »

Mentors: Jean Leray and André Lichnerowicz
Upon a suggestion of Jean Leray, she chooses her main PhD thesis topic: to give the first
mathematical proof of the existence (and well-posedness) of generic (non analytic) solutions

of Einstein’s vacuum field equations.

Reaction of her thesis advisor (André Lichnerowicz): « This is too difficult for a
beginner. » However, Jean Leray encouraged, and helped, her.



3+1 decomposition of spacetime
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CRAS 1948 and Journal of Rational Mechanics and Analysis 1956
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The problem of constraints on 7i; and A
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Early history on solving the constraints (cf YCB 2014)
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YCB 1961: Elliptic system in harmonic coordinates for and d ’
Vaillant-Simon 1969 constructs solutions near flat spacetime
York 1972, 1974 general solutions of the momentum constraint

YCB 1974 asympt flat solutions of Hamiltonian constr in Holder spaces,
later improved using weighted Sobolev spaces. [see her 2009 book OUP]



Beginnings of the Cauchy problem.

Yvonne Choquet-Bruhat
October 15, 2014

1410.3490 [grqc]



« Stability of flat space » (YCB+Deser 1973)

On the Stability of Flat Space

Y. CHOQUET-BRUHAT

Laboratoire de Mécanique Relativiste, Université de Paris VI, Paris, France
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Laboratoire de Physique Théorique et Hautes Energies
Université de Paris XI, Orsay, France

Received December 14, 1972

It is shown that: (1) there exists, near flat space, a neighborhood of nonsingular
asymptotically flat weak field solutions of the initial value equations of General Relativity;
the solutions have physically appropriate generality; and (2) this neighborhood is
complete and flat space is stable; every geometry representing a weak perturbation and
satisfying the varied constraints is tangent to the space of solutions.



YCB+Deser 1973

We shall deal primarily with the simplest problem, in which the base geometry
is the classical vacuum: flat space on R3, It will be shown rigorously that near it,
there exists a complete neighborhood of nonflat weak excitations, with physically
interesting asymptotic behavior. These solutions have the generality to be expected,
on physical grounds, of a massless tensor field. Vacuum is also stable: every per-
turbation satisfying the varied constraints is tangent to some curve of solutions
lying in the neighborhood of flat space. This comparison provides a measure of
the completeness of solution space with respect to that of allowed variations.



Positive mass results

1976 YCB+Marsden: First rigorous proof of positivity of mass for
vacuum spacetimes near Minkowski, following Brill-Deser 1968, and
using a critical point analysis in infinite dimensions

Solution of the Local Mass Problem in General Relativity

Yvonne Choquet-Bruhat

Département de Mécanique, Université de Paris VI, F-Paris, France

Jerrold E. Marsden*

Department of Mathematics, University of California, Berkeley, California 94720, USA

Abstract. The local mass problem is solved. That is, in suitable function
spaces, it is shown that for any vacuum space-time near flat space, its mass m
is strictly positive. The relationship to other work in the field and some discus-
sion of the global problem is given. Our proof is, in effect, a version of critical
point analysis in infinite dimensions, but detailed L? and Sobolev-type
estimates are needed for the precise proof, as well as careful attention to the
coordinate invariance group. For the latter, we prove a suitable slice theorem
based on the use of harmonic coordinates.

2011 simplified spinorial proof (a la Witten) of energy
positivity, and mass positivity (E > |P|), in any dimension



Problems with Using the 3+1 Formulation (YCB 1956, ADM 1962)
for Solving Einstein Eqs.
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First-order evolution system for h_ij and K_ij, given the lapse N and the shift N_i :
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It was initially thought in Numerical Relativity that one could directly use such an
evolution system. However, it led to many numerical instabilities when used

as such.
Mathematically, it was on the contrary assumed to be « bad », i.e., non hyperbolic.

However, YCB 2009 OUP showed that it was Leray-Ohya hyperbolic (« hyperbolique

non strict ») , which ensures good
causality properties (domain of dependence), albeit within non Sobolev-type functional
spaces: Gevrey classes of nhon-analytic, but smooth functions.



1982-3 First (3+1)-type Hyperbolic Systems
for Einstein’s Eqs (YCB+ Ruggeri)

Hyperbolicity of the 341 System
of Einstein Equations

Yvonne Choquet-Bruhat' and Tommaso Ruggeri?

I Département de Mécanique, Université Paris VI, Paris, France
2 Istituto di Matematica Applicata, Universita di Bologna, Bologna, Italy

Abstract. By a suitable choice of the lapse, which in a natural way is connected
to the space metric, we obtain a hyperbolic system from the 3+ 1 system of
Einstein equations with zero shift; this is accomplished by combining the
evolution equations with the constraints.

harmonicity
N of the time

— =cst L.e.g"T), =0; and N; = 0 coordinate

Vh

Later YCB+York 1996; generalized it to the non-zero shift case



YCB+ Ruggeri’s 1983 3+1 hyperbolic system
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Later YCB+York 1996; generalized it to the non-zero shift case

descendants of these 3+1 hyperbolic systems
have been used in Numerical Simulations of
coalescing binary black holes



Descendants of YCB-Ruggeri 3+1 hyperbolic systems used in NR
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BSSN formulation: Shibata-Nakamura 1995; Baumgarte-Shapiro 1998
Punctures: Brandt-Bruegmann 1997 represents black holes by punctures
Brill-Lindquist(1963)-like + Bowen-York (1980) initial data

moving punctures: Campanelli-Lousto-Maronetti-Zlochower 2006,
Baker-Centrella-Choi-Koppitz-vanMeter 2006



Descendants of YCB 1952 harmonic-coords
hyperbolic system used in NR
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First succesfull numerical simulations of coalescing BBH

Pretorius 2005
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Besides her many fundamental research
contributions YCB has had a deep impact
through the writing of many
information-laden, influential books
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